Management Plan

For Antarctic Specially Protected Area (ASPA) No. 161
TERRA NOVA BAY, ROSS SEA

Introduction

The ASPA of Terra Nova Bay is a coastal marine area encompassing 29.4 km² between Adélie Cove and Tethys Bay, Terra Nova Bay, immediately to the south of the Italian Mario Zucchelli Station (MZS). Terra Nova Bay was originally designated as Antarctic Specially Protected Area through Measure 2 (2003) after a proposal of Italy. CCAMLR considered and approved its designation during CCAMLR XXVI, Hobart 2007. The Management Plan has been revised in 2008, through measure 14 (2008) and in 2013 through measure 15 (2013).

The primary reason for the designation of Terra Nova Bay as an Antarctic Specially Protected Area (ASPA) is its particular interest for ongoing and future research. Long term studies conducted in the last 30 years by Italian scientists have revealed a complex array of species assemblages, characterized by unique symbiotic interactions. In this Area, several VME species are also present, above all the Antarctic scallop Adamussium colbecki and pterobranchs, and new species continue to be described.

The high ecological and scientific values derived from the diverse range of species and assemblages, together with the vulnerability of the Area to disturbance by scientific oversampling, alien introductions, and direct human impacts arising from increasing activities at the nearby permanent scientific stations (also considering the construction of the new gravel runway at Boulder Clay - Final CEE, 2017) are such that the Area requires long-term special protection.

No Domain nor ACBR number is proposed as the Environmental Domain Analysis for Antarctica (Resolution 3, 2008) and Antarctic Conservation Biogeographic Regions (Resolution 6, 2012) classifications are based on terrestrial criteria.

1. Description values to be protected

This coastal marine area is an important area for well-established and long-term scientific investigations that allowed, up to now, to collect an extensive amount of scientific data. The site typically remains ice-free in summer, which is rare for coastal areas in the Ross Sea region, making it an ideal and accessible site for research into the near-shore benthic communities of the region. Extensive marine ecological research has been carried out at Terra Nova Bay since 1986/87, contributing substantially to our understanding of the marine communities in this area, and of the effect of katabatic winds on the physical, chemical and biological processes occurring in the water column (Povero et al., 2001).

High diversity at both species and community levels make this Area of high ecological and scientific value. Studies have revealed a complex array of species assemblages, often co-existing in mosaics (Sarà et al., 1992; 2002; Gambi et al., 1997; Cantone et al., 2000; Ghiglione et al., 2013) and characterized by unique symbiotic interactions (Schiaparelli et al., 2011; 2015; Regoli et al., 2004). There exist assemblages with high species richness and complex functioning, such as the sponge and anthozoan communities, alongside loosely structured, low diversity assemblages. In this area several VME species also occur, above all the Antarctic scallop Adamussium colbecki (Schiaparelli and Linse, 2006) and pterobranchs (Schiaparelli et al., 2004), and new species continue to be described (Schiaparelli and Jirkov, 2016). A population of Adélie penguins (Pygoscelis adeliae) is present nearby the Area.

The collected scientific data over the years, allowed the site to serve as reference for the determination of impacts arising from human activities (Berkman and Nigro, 1992; Focardi et al., 1993; Minganti et al., 1995; Bruni et al., 1997; Nonnis Marzano et al., 2000, Lo Giudice et al., 2013).
2. Aims and objectives

- avoid degradation of, or substantial risk to, the values of the Area by preventing unnecessary human disturbance to the Area;
- allow scientific research on the ecosystem, in particular on the marine species assemblages and long-term monitoring, while ensuring protection from oversampling or other possible human impacts;
- allow other scientific research and support activities provided they are for compelling reasons which cannot be served elsewhere;
- minimise the possibility of introduction of alien plants, animals and microbes to the Area;
- allow visits for management purposes in support of the aims of the Management Plan.

3. Management activities

The following management activities are to be undertaken to protect the values of the Area:

- A map showing the location of the Area (stating the special restrictions that apply) shall be displayed, and a copy of this Management Plan shall be kept available, at all the scientific stations located within 50 km of the Area. Information illustrating the location and boundaries with clear statements of entry restrictions is displayed on Posters at MZS;
- Buoys, or other markers or structures established for scientific or management purposes shall be secured and maintained in good condition, and removed when no longer necessary;
- Any abandoned equipment or material shall be removed to the maximum extent possible, provided that doing so does not adversely impact on the environment and the values of the Area;
- Visits shall be made as necessary to assess whether the Area continues to serve the purposes for which it was designated and whether management and maintenance measures are adequate.
- National Antarctic Programs are encouraged to consult together to prevent oversampling within the Area.

4. Period of designation

Designated for an indefinite period.

5. Maps and photographs

Map 1: Terra Nova Bay, Antarctic Specially Protected Area No. 161, bathymetric map.


6. Description of the Area

6(i) Geographical co-ordinates, boundary markers and natural features

General description, borders and coordinates

The Area is situated in Terra Nova Bay, between the Campbell Glacier Tongue and Drygalski Ice Tongue, Victoria Land (Map 1). It is confined to a narrow strip of coastal waters to the south of MZS (Italy), extending approximately 9.4 km in length and generally within 1.5 – 7 km of the shore, comprising an area of 29.4 km² (Map 1). No marine resource harvesting has been, is currently, or is planned to be conducted within the Area, nor in the immediate surrounding vicinity.

The western boundary of the Area is defined as the mean high water mark along the coastline extending between 74°42’57”S in the north (2.3 km south of MZS) and 74°48’00”S in the south (the southern shore of Adélie Cove), and includes the intertidal zone (Map 1). The northern boundary of the Area is defined as the 74°42’57”S line of latitude, extending from the coast 1.55 km eastward to the 164°10’00”E line of longitude. The boundary position may be recognised near the shore by the presence of a large and distinctive offshore rock in the northernmost cove on the coast south of MZS, which is an unique feature on this stretch of coast. The southern boundary is defined as the 74°48’00”S line of latitude, extending from the coast 3.63 km eastward to the 164°10’00”E line of longitude. The boundary position may be recognized visually as being at the southern shore of the mouth of Adélie Cove, immediately south of a distinctive rocky outcrop at the base of the coastal cliffs. The eastern boundary of the Area is defined as the 164°10’00”E line of longitude extending between 74°42’57”S in the north and 74°48’00”S in the south.
Geology

The coastline of Terra Nova Bay is characterised predominantly by rocky cliffs, with large boulders forming occasional ‘beaches’ (Simeoni et al., 1989). In the sheltered areas, the soft bottom begins at a depth of 20–30 m. The tidal range is 1.5–2 m and pack ice approximately 2–2.5 m thick covers the sea surface for 9–10 months of the year (Stocchino and Lusetti, 1988; 1990). Data available for the summer period suggest that ocean currents in the Area are likely to be slow and to flow generally in a north-south direction. Along the coastline of the Area there are two main coves; the larger Adélie Cove in the south and a smaller cove around 3 km to its north. The sea floor substrate of the smaller consists of pebbles of various sizes, while Adélie Cove is characterised by fine-grained, muddy sediments. The seafloor within the Area is primarily granitic rock, with softer substrates composed of coarse sands or gravels.

Invertebrates (0-40 m)

In the supralittoral zone, only cyanobacteria and diatoms colonise the hard substrates, while the intertidal zone (1.5–2.0 m wide) has, in the most sheltered areas, a high coverage of the green alga Urospora penicilliformis and Prasiola crispa (Cormaci et al., 1992b). Below the tidal zone, down to 2–3 m depth, the community is very poor, due to the persistent presence and scouring action of pack ice, and is mainly composed of epilithic diatoms and the crustacean amphipod Paramoera walkeri. Immediately deeper, rocks can be fully colonised by the red alga Iridaea cordata (Cormaci et al., 1996), frequently found with Plocamium cartilagineum, to a depth of 12 m (Gambi et al., 1994; 2000a). At this level, large sessile animals such as Alcyonium antarcticum and Urticina antarctica can be occasionally observed, while frequent are the asteroid Odontaster validus and the echinoid Sterechinus neumayeri and the starfish Odontaster validus are still very frequent at all depths on both hard and mobile substrates (Chiantore et al., 2002; Cerrano et al., 2000b). Several unique biotic associations have been described at these depths, e.g. between sponges and other invertebrates (Schiaparelli et al., 2000; 2003; 2007; 2010; 2011; 2015). Sponge also represents a key taxon, which has been widely investigated in terms of symbionts (Regoli et al., 2004) and associated microbes (Lo Giudice et al., 2019). In recent years also new species for science have been described as the parasitic amphipod Lepidepecreella debroyeri (Schiaparelli et al., 2015) and the ampharetid polychaete Amphipiteis tersea (Schiaparelli and Jirkov, 2016). Other data have been produced about VME species, such as Cephalodiscus densus (Schiaparelli et al., 2004) and Adamussium colbecki (Schiaparelli and Linse, 2006). About the latter species, new analyses of data collected in 2006-2007, thank to the presence of a mooring within the ASPA boundaries (Mooring “L” under the Italian mooring code system), showed that this species recruits during summer months in coincidence with an increase of the seawater temperature and a seasonal shift in the water currents and intensity (Schiaparelli and Aliani, 2019).

Invertebrates (30-70 m)

Between 30–70 m, the substrate becomes finer and is completely colonised by the bivalve Adamussium colbecki, the shells of which are colonised by a micro-community comprising mainly forams, by bryozoans (Amulisus antarctica, Arachnopodia decipiens, Ellisina antarctica, Micropora brevissima) and the spirobid Paraleeospira levinseni (Albertelli et al., 1998; Ansell et al., 1998; Chiantore et al., 1998; 2000; 2001; 2002; Vacchi et al., 2000a; Cerrano et al., 2001a; 2001b). In this region, large predators such as the gastropod Neobuccinum eatoni and the nemertean Parborlasia corrugatus are frequent. The echinoid Sterechinus neumayeri and the starfish Odontaster validus are still very frequent at all depths on both hard and mobile substrates (Chiantore et al., 2002; Cerrano et al., 2000b). Several unique biotic associations have been described at these depths, e.g. between sponges and other invertebrates (Schiaparelli et al., 2000; 2003; 2007; 2010; 2011; 2015). Sponge also represents a key taxon, which has been widely investigated in terms of symbionts (Regoli et al., 2004) and associated microbes (Lo Giudice et al., 2019). In recent years also new species for science have been described as the parasitic amphipod Lepidepecreella debroyeri (Schiaparelli et al., 2015) and the ampharetid polychaete Amphipiteis tersea (Schiaparelli and Jirkov, 2016). Other data have been produced about VME species, such as Cephalodiscus densus (Schiaparelli et al., 2004) and Adamussium colbecki (Schiaparelli and Linse, 2006). About the latter species, new analyses of data collected in 2006-2007, thank to the presence of a mooring within the ASPA boundaries (Mooring “L” under the Italian mooring code system), showed that this species recruits during summer months in coincidence with an increase of the seawater temperature and a seasonal shift in the water currents and intensity (Schiaparelli and Aliani, 2019).

Invertebrates (70-130 m)

Below 70–75 m down to 120–130 m depth, heterogeneous substrates allow hard- and soft-bottom communities to coexist. On the sparse rocky outcrops the encrusting algae disappear and the benthic communities are dominated by the sessile zoobenthos. This diversified filter feeding assemblage is mainly characterised by sponges and anthozoa, while in soft sediments detritus-feeder polychaetes and bivalves dominate. Among sponges, which can reach very high biomass values, Axociella nidificata, Calyx arcuarius, Gellius rudis, Phorbas glaberrima, Tedania charcoti, are very abundant (Sarà et al., 1992; 2002; Gaino et al., 1994; Cattaneo-Vietti et al., 1996; 2000c; Bavestrello et al., 2000; 2001a; 2001b). In this region, large predators such as Adamussium colbecki, the shells of which are colonised by a micro-community comprising mainly forams, by bryozoans (Amulisus antarctica, Arachnopodia decipiens, Ellisina antarctica, Micropora brevissima) and the spirobid Paraleeospira levinseni (Albertelli et al., 1998; Ansell et al., 1998; Chiantore et al., 1998; 2000; 2001; 2002; Vacchi et al., 2000a; Cerrano et al., 2001a; 2001b). In this region, large predators such as the gastropod Neobuccinum eatoni and the nemertean Parborlasia corrugatus are frequent. The echinoid Sterechinus neumayeri and the starfish Odontaster validus are still very frequent at all depths on both hard and mobile substrates (Chiantore et al., 2002; Cerrano et al., 2000b). Several unique biotic associations have been described at these depths, e.g. between sponges and other invertebrates (Schiaparelli et al., 2000; 2003; 2007; 2010; 2011; 2015). Sponge also represents a key taxon, which has been widely investigated in terms of symbionts (Regoli et al., 2004) and associated microbes (Lo Giudice et al., 2019). In recent years also new species for science have been described as the parasitic amphipod Lepidepecreella debroyeri (Schiaparelli et al., 2015) and the ampharetid polychaete Amphipiteis tersea (Schiaparelli and Jirkov, 2016). Other data have been produced about VME species, such as Cephalodiscus densus (Schiaparelli et al., 2004) and Adamussium colbecki (Schiaparelli and Linse, 2006). About the latter species, new analyses of data collected in 2006-2007, thank to the presence of a mooring within the ASPA boundaries (Mooring “L” under the Italian mooring code system), showed that this species recruits during summer months in coincidence with an increase of the seawater temperature and a seasonal shift in the water currents and intensity (Schiaparelli and Aliani, 2019).
Invertebrates (below 130 m)

Below 130 m the hard substrates become very sparse and are mainly colonised by the polychaete Serpula narconensis (Schiaparelli et al., 2000) and several bryozaans (Arachnopus decipiens, Ellisiina antarctica, Flustra angusta, F. vulgaris and Isoschizoporella similis). The dominant muddy bottoms are instead characterised by tubicolous polychaetes (Gambi et al., 2000b). The present study on nearby the Area at Adélie Cove, with a 2013 population of 13,408 breeding pairs (Humphries et al., 2017) (Map 1). About 30 Skua (Stercorarius maccormicki) pairs breed close to the penguins (Final CEE – 2017).

The faunal assemblage of the Area includes notothenioid fishes, represented especially by species of the Trematomus group, including T. bernacchi, T. pennelli, T. hansonii and T. loennbergii. These exert an important role in benthic food webs as consumers of many invertebrate species, mainly crustaceans and polychaetes (Vacchi et al., 1991; 1992; 1994a; 1994b; 1995; 1997; 2000b; La Mesa et al., 1996; 1997; 2000; Guglielmo et al., 1998). The platelet ice occurring at Terra Nova Bay in early spring has been shown to house an important nursery for the Antarctic silverfish, Pleuragramma antarcticum, a key organism in the ecology of Antarctic food webs (La Mesa et al., 2004; Vacchi et al., 2004). The platelet ice environment has strong prooxidant characteristics at the beginning of austral spring, and the marked responsiveness of antioxidant defences represents a fundamental strategy for P. antarcticum (Regoli et al., 2005b).

An aerial survey on cetacean species, conducted in the coastal area surrounding the Italian Station Mario Zucchelli, showed the presence of Killer Whale Orcinus Orca (L.), types B and C and Minke Whale (Balaenoptera bonaerensis Burmeister). (Lauriano et al., 2007a; 2007b; Lauriano pers. com.). Leopard seals (Hydrurga leptonyx) were sighted several times at the end of the slope that penguins climb to reach the colony in the area represented in Map 1.

Environmental characterization

Studies on industrial pollutants in biomarkers allowed to monitor the impact of human activities on the Antarctic biota in Terra Nova Bay area (Focardi et al., 1995; Regoli et al., 1998; Jimenez et al., 1999; Regoli et al., 2005a; Benedetti et al., 2005, 2007; Canapa et al., 2007; Di Bello et al., 2007, Corsolini, 2009).

In Terra Nova Bay, organisms are exposed to a naturally elevated bioavailability of cadmium causing tissue concentrations generally 10-50 folds higher than those typical of temperate species (Mauri et al., 1990; Negro et al., 1992, 1997; Canapa et al., 2007, Mangano et al., 2014, Caruso et al., 2018). Elevated level of cadmium at Terra Nova Bay modulates bioaccumulation and metabolism of polycyclic aromatic hydrocarbons and of organochlorine xenobiotics in local marine organisms (Regoli et al., 2005a; Benedetti et al., 2007; Canapa et al., 2007). Recent analyses (Signa et al., 2019) reported increased concentrations of Pb and Hg (Pb: Grotti et al., 2008; Ianni et al., 2010; Hg: Bargagli et al., 1998; Negri et al., 2006), and phytoplankton reached trace elements levels from 2-fold (Hg) to 4-fold (Cd) and even 10-fold (Pb) higher than those previously recorded (Bargagli et al., 1996, 1998; Dalla Riva et al., 2003). In contrast, Hg concentration measured in feathers of Adelie penguins (Pygoscelies Adeliae) and Skua (Catharacta maccormicki) in 2013 (Signa et al. 2019) did not differ from those measured in 1989-1991 (Bargagli et al. 1998).

A systematic publication of faunal check-lists for the Terra Nova Bay area has been stated by the Italian National Antarctic Museum (MNA, https://steu.shinyapps.io/MNA-generale/) in 2013, with the final target to provide to GBIF distributional information for all taxa occurring in the area. Data are available for: Mollusca (Ghiglione et al., 2013), Tanaidacea (Piazza et al., 2014), Ophiuroidea (Cecchetto et al., 2017), Porifera (Ghiglione et al., 2018), Bryozoa (Cecchetto et al., 2019).

In recent years, remotely operated vehicle surveys and transects were performed. Georeferenced images were taken at specific points identifying the appearing species (Canese et al., 2015). These activities allow to monitor changes in coastal benthic communities (Piazza et al., 2018; Piazza et al., in press). Ongoing studies on food web structure will enable to quantify trophic interactions between species and potential community vulnerability to biodiversity loss and changes in sea-ice dynamics (Calizza et al., 2018, Signa et al., 2019).

Human Activities

The Area is close to the Italian Station Mario Zucchelli (74°41’39’S, 164°06’55”E) that can accommodate approximately 90 people, has facilities for helicopter operations and a jetty for the docking of small boats. Fuel used at the station is Jet-A1. The station is equipped with a waste water treatment plant. Treated water is discharged to the sea adjacent to the station 2.3 km from the northern boundary of the Area. A support ship regularly visits Mario Zucchelli Station during the summer, and there are occasional visits by tourist ships. These usually stop offshore several kilometers to the north of the Area.

Other nearby stations are Gondwana (74°38’0.7”S, 164°13’19”E; Germany), a summer station with capacity for approximately 25 personnel, Jang Bogo station (74°37’15”S, 164°11’57”E; Republic of Korea) year round station with a complement of 60 personnel during summer and 17 during winter. China is currently establishing a new station on nearby Inexpressible Island which will operate year-round with a complement of up to 30 in winter and 80 summer personnel (CAA 2018).
A gravel runway is under construction at Boulder Clay site, Terra Nova Bay (74°44'45"S, 164°01'17"E, 205 m a.s.l.). The end of the runway is about 1.8 km from the penguin colony of Adelie Cove. An Environmental Impact Monitoring Plan has been developed to evaluate changes in the ecosystem during construction and operation of the runway (Draft CEE – MZS gravel runway ATCM39).

6(ii) Access to the Area
Access into the Area is generally by ship. Access into the Area may be made by air or over sea ice when conditions allow. Access routes within the Area have not been defined.

6(iii) Location of structures within and adjacent to the Area
There are no structures within the Area. The nearest structure is the atmospheric monitoring facility (locally referred to as ‘Campo Icario’) 650 m north of the northern boundary of the Area, while Mario Zucchelli Station (74°41'42"S, 164°07'23"E) is situated on a small peninsula on the coast adjacent to Tethys Bay, a further 1.65 km to the north. A gravel runway is under construction at Boulder Clay site, Terra Nova Bay (74°44'45"S, 164°01'17"E, 205 m a.s.l.). The end of the runway is about 1.8 km from the penguin colony of Adelie Cove.

6(iv) Location of other protected areas in the vicinity
ASPA No. 175 the high altitude geothermal sites on Mount Melbourne, is a terrestrial site situated 45 km to the NE, which is the only other protected area within close proximity.

6(v) Special zones within the Area
There are no special zones within the Area.

7. Terms and conditions for entry permits

7(i) General permit conditions
Entry into the Area is prohibited except in accordance with a permit issued by the appropriate national authority. Conditions for issuing a permit are that:

- it is issued for scientific purposes, or for educational purposes which cannot be served elsewhere; and/or
- it is issued for essential management purposes consistent with plan objectives such as inspection, maintenance or review;
- the actions permitted will not jeopardise the values of the Area;
- any management activities are in support of the objectives of the Management Plan;
- the actions permitted are in accordance with the Management Plan;
- The permit, or a copy, shall be carried by the holder within the Area;
- permits shall be issued for a stated period

7(ii) Access to and movement within the Area
Access into the Area shall be by sea, land, over sea ice or by air. There are no specific restrictions on routes of access to and movement within the Area, although movements should be kept to the minimum necessary consistent with the objectives of any permitted activities and every reasonable effort should be made to minimise disturbance. Anchoring is prohibited within the Area. There are no overflight restrictions within the Area and aircraft may land by permit when sea ice conditions allow, taking into consideration the Penguin colony situated at Adelie Cove and following the Guidelines for Operations of Aircraft near Concentration of Birds in Antarctica (Resolution 2, 2004), to limit disturbance.

7(iii) Activities that may be conducted within the Area
Activities that may be conducted in the Area should not jeopardise the values of the Area and include:

- Scientific research that cannot be served elsewhere;
- Sampling, which should be the minimum required to reach the scientific goals. Selective and less-invasive sampling methods should always be considered to reduce disturbance of the rich bottom communities;
- Essential management activities, including monitoring and inspection;
- Operational activities in support of scientific research or management of the Area;
- Activities for educational and outreach purposes

7(iv) Installation, modification or removal of structures
Structures or scientific equipment shall not be installed within the Area except as specified in a permit. All markers, structures or scientific equipment installed in the Area shall be clearly identified by country, name of the principal investigator and year of installation. All such items should be made of materials that pose minimal risk of contamination of the Area. Removal of specific equipment for which the permit has expired is mandatory.

7(v) Location of field camps
None within the Area. 
7(vi) Restrictions on materials and organisms which can be brought into the Area

- No living animals, plant material, pathogens or microorganisms shall be deliberately introduced into the Area.
- Poultry products, including food products containing uncooked dried eggs, shall not be introduced into the Area.
- No herbicides or pesticides shall be introduced into the Area.
- Chemicals, including radio-nuclides or stable isotopes, which may be introduced for the scientific or management purposes specified in the permit, shall be used in the minimum quantities necessary to achieve the purpose of the activity for which the permit was granted.
- All materials introduced in the Area shall be stored and handled so that risk of their accidental release into the environment is minimized and removed at the end of the period allowed in the permit.
- Visitors shall take special precautions against marine pollution and ensure that sampling equipment or markers brought into the Area are clean. Vessels that are found to show fuel leakage, or a significant risk of such leakage, are prohibited from entering the Area.

7(vii) Taking or harmful interference with native flora or fauna

Taking or harmful interference with native flora or fauna is prohibited, except by permit issued in accordance with Annex II to the Protocol on Environmental Protection to the Antarctic Treaty. Careful environmental evaluation is needed concerning trawling, dragging, grabbing, dredging, or deployment of nets because of the sensitivity of the rich bottom communities to disturbance. More selective and less-invasive sampling methods should always be considered;

Where taking of or harmful interference with animals is involved, the SCAR Code of Conduct for the Use of Animals for Scientific Purposes in Antarctica (ATCM XXXIV-CEP XIV, 2011) should be used as a minimum standard.

7(viii) Collection or removal of materials not brought into the Area by the permit holder

Any anthropogenic material found should be notified to the appropriate national authority.

Material may be collected or removed from the Area only in accordance with a permit. In this case removal of material should not create an impact greater than leaving the material in situ.

7(ix) Disposal of waste

All wastes, including all human wastes, shall be removed from the Area.

7(x) Measures that may be necessary to continue to meet the aims of the Management Plan

Permits may be granted to enter the Area to
- carry out monitoring and site inspection activities, which may involve the collection of limited samples for analysis or review, or for protective measures;
- install markers on specific sites of long-term monitoring.

7(xi) Requirements for reports

The holder of each permit issued should report to the appropriate national competent authority about the activity undertaken in the Area.

Such reports should include, as appropriate, the information identified in Appendix 2- ASPA visit report form of the Guide to the Preparation of Management plans for ASPAs (Resolution 2, 2011). Parties should, wherever possible, exchange with the Party that proposed the Management Plan, information on reports received to assist managing the Area.
8. References


Map 1 Terra Nova Bay ASPA N° 161, Victoria Land, Ross Sea.